الوطن العربي

منشور ثلاثي ارتفاعه 8.5 – موقع المرجع

منشور ثلاثي ارتفاعه 8.5 - موقع المرجع

جدول المحتويات

منشور مثلث بإرتفاع 8.5 إنها مشكلة رياضية هندسية حيث أن المنشور الثلاثي هو شكل هندسي صلب ، أي صلب قاعدته مثلث ومنشور رباعي قاعدته مربعة ، إلخ. اشرح طريقة الحل والقانون المستخدم لذلك.

منشور مثلث بإرتفاع 8.5

يكون نص المهمة في منهج الرياضيات كما يلي:

  • المنشور المثلث ارتفاعه 8.5 م وقاعدة مثلثة ارتفاعه 14 م وطول قاعدته 5 م ما هو حجم المنشور؟

الحل:

  • حجم المنشور = مساحة القاعدة × ارتفاع المنشور
  • حجم المنشور = (½ x قاعدة المثلث x ارتفاع المثلث) x ارتفاع المنشور
  • حجم المنشور = (½ × 5 × 14) × = 8.5 297.5 متر مكعب.

ما هو المنشور الثلاثي؟

منشور مثلث أو منشور مثلث متعدد السطوح ثلاثي الأبعاد تتكون قاعدته من ثلاثة جوانب ولهذا سمي بالمثلثوكلمة “موشور” تدل على المساحة التي يوجد فيها وجهان متعاكسان متماثلان ومتوازيان ، وهنا يوجد مثلثات. يسمى الوجهان أساس المنشور ، وارتفاعه هو المسافة بينهما. المنشور هو رباعي الزوايا ، وإذا كان له خمسة جوانب ، فإن المنشور يكون خماسي الأضلاع. وكلما زاد عدد الجوانب ، يزداد عدد الوجوه في المنشور ، بحيث يكون هناك 3 أوجه في المنشور الثلاثي وأربعة في الشكل الرباعي.[1]

انظر ايضا: قيمة فاتورة الكهرباء للمنزل السعيد لعدة أشهر 45 ، 75 ، 60 ، 55 ، 65 ، 80 ، 40

قانون الحجم للمنشور الثلاثي

يمكن حساب حجم المنشور من أي نوع من القانون العام: حجم المنشور = مساحة القاعدة × ارتفاع المنشورهذا القانون خاص بكل منشور وفقًا لنوعه ، لأن قانون حساب مساحة القاعدة خاطئ ، وفي حالة المنشور الثلاثي ، يكون للقاعدة شكل مثلث ، أي حاء- نستخدم القانون لحساب مساحة المثلث: مساحة المثلث = (½ x قاعدة المثلث x ارتفاع المثلث) بناءً على ذلك ، نجد أن صيغة حجم المنشور المثلثي هو:

  • حجم المنشور الثلاثي = (½ x قاعدة المثلث x ارتفاع المثلث) x ارتفاع المنشور

في نهاية هذه المقالة ، انتهينا من حل المشكلة منشور مثلث بإرتفاع 8.5 حيث كان الحل الصحيح 297.5 متر مكعب وشرحنا أيضًا ماهية المنشور في الشكل العلمي وعلى وجه الخصوص المنشور الثلاثي ، بالإضافة إلى ذكر القانون الذي يمكن من خلاله حساب حجم هذا المنشور.

السابق
جزء النبات الذي يحمل الاوراق والازهار
التالي
لجعل الصورة بالتدرج الرمادي دون ألوان نختار تأثير فانيلا

اترك تعليقاً